Search results

Search for "growth temperature" in Full Text gives 36 result(s) in Beilstein Journal of Nanotechnology.

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • concentration of carbon sources. The growth regions end where the local temperature falls below the minimum growth temperature. The growth temperature has been measured at the growth regions. There is a difference of average temperature of about 100 °C between growth regions below 9 mm and above 10 mm. The
  • radially in all regions. The temperature uniformity across the radial locations is expected to produce less heterogeneous particle sizes. The average growth temperature in the premixed flame has been measured for all regions. Interestingly, there is a significant difference of 200 °C between the
  • above 10 mm HAB. The average temperature for growth regions below 10 mm HAB falls within the narrow range of 880 to 910 °C, whereas for regions above 10 mm HAB, the average growth temperature is between 790 to 830 °C. As reported by Hamzah et al. [9], at low HAB values, the growth region is located in a
PDF
Album
Full Research Paper
Published 21 Jun 2023

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • narrow direct optical energy gap, which ranges from 0.96 to 1.1 eV at room temperature. Ag2S has good chemical stability, low toxicity, and high optical absorption [4]. According to the growth temperature, Ag2S has three phases: monoclinic α-Ag2S (acanthite), β-Ag2S (argentite), and the stable γ-Ag2S [5
PDF
Album
Full Research Paper
Published 21 Oct 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • growth temperature of 720 °C, which yields a certain SiNW diameter distribution. VLS nanowire growth is carried out in a quartz tube furnace with a precursor gas mixture of H2 (270 sccm) and SiH4 (30 sccm), at a pressure of 100 mbar. Silicon shells are grown at a temperature of 520 °C with a gas mixture
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • , we report CuInSe2 nanodots grown through a vacuum-compatible co-evaporation growth process on an amorphous surface. The density, mean size, and peak optical emission energy of the nanodots can be controlled by changing the growth temperature. Scanning transmission electron microscopy measurements
  • /min was determined by measuring the thickness of thick CIS calibration samples. To avoid Se loss, the samples were cooled down from the maximum growth temperature to 300 °C at 10 °C/min under Se flux. Below 300 °C, the cooling rate was reduced to approximately 5 °C/min and the Se flux was ceased. In
  • this work we present samples prepared at substrate temperatures of 490, 530, and 580 °C; they will be referred to by their growth temperature. Characterization The surface morphology was determined by scanning electron microscopy (SEM) in a FEI Quanta 650 FEG SEM microscope. Scanning transmission
PDF
Album
Full Research Paper
Published 22 May 2019

Integration of LaMnO3+δ films on platinized silicon substrates for resistive switching applications by PI-MOCVD

  • Raquel Rodriguez-Lamas,
  • Dolors Pla,
  • Odette Chaix-Pluchery,
  • Benjamin Meunier,
  • Fabrice Wilhelm,
  • Andrei Rogalev,
  • Laetitia Rapenne,
  • Xavier Mescot,
  • Quentin Rafhay,
  • Hervé Roussel,
  • Michel Boudard,
  • Carmen Jiménez and
  • Mónica Burriel

Beilstein J. Nanotechnol. 2019, 10, 389–398, doi:10.3762/bjnano.10.38

Graphical Abstract
  • , probably due to the difference in growth temperature between the two steps, but no flower bouquet effect is observed for this thickness of ca. 100 nm. The first step of the phase identification for the LMO films grown by strategies I, II and III was performed by GIXRD. The XRD patterns corresponding to
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • one case the growth temperature was 950 °C and in the other case it was 1000 °C (Figure S1a). In the case of VS growth, a mixture of SnO2 QDs of size 2.4 nm and graphite powder (Alfa Aesar, 99.9995%) in a 3:1 weight ratio was placed in a high purity Al2O3 crucible (99.99%). The NWs were grown in the
  • expressed as shown in Equation 1 and Equation 2, respectively [8]: Here Δgv is the Gibbs free energy per unit volume and quantified as RT(1,2)/Vm ln(P/Pe), and Δgv is basically a function of growth temperature (T1 = 1223 K, for square-shaped NWs and T2 = 1273 K, for cylindrical-shaped NWs). Again, r1 (r2
  • conduction band stabilize due to the lack of thermal energy. Consequently, an increase in probability of transitions occurs from energy levels closer to the conduction band. This supports the proposed band diagram (Figure 8d). Conclusion In summary, the growth temperature of NWs was found to control the
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • of precursors and the growth is controlled by some additional reactants during the chemical reaction such as KOH, LiOH and NaOH [21][22]. These additional reactants are employed to reduce the growth rate as well as growth temperature. But, even for a very small concentration of additional reactant
  • decreasing the growth temperature and growth rate); cost-effective (due to employing a simple electrolytic bath cell and current source) and ability to grow various nanostructures at ambient pressure and temperature. Moreover, the directed nanocrystal growth can be accomplished on a substrate, rather than in
PDF
Album
Full Research Paper
Published 24 Jan 2019

A scanning probe microscopy study of nanostructured TiO2/poly(3-hexylthiophene) hybrid heterojunctions for photovoltaic applications

  • Laurie Letertre,
  • Roland Roche,
  • Olivier Douhéret,
  • Hailu G. Kassa,
  • Denis Mariolle,
  • Nicolas Chevalier,
  • Łukasz Borowik,
  • Philippe Dumas,
  • Benjamin Grévin,
  • Roberto Lazzaroni and
  • Philippe Leclère

Beilstein J. Nanotechnol. 2018, 9, 2087–2096, doi:10.3762/bjnano.9.197

Graphical Abstract
  • bias, while fixing the growth temperature to 450 °C and the tilt angle between the substrate and the cathode axis to 60°. Anatase TiO2 layers with a 200 nm thick nanocolumnar morphology have been deposited on 85 nm-thick ITO-coated glass substrates (Naranjo B.V., sheet resistance of 15 Ω·sq). The
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2018

Effect of annealing treatments on CeO2 grown on TiN and Si substrates by atomic layer deposition

  • Silvia Vangelista,
  • Rossella Piagge,
  • Satu Ek and
  • Alessio Lamperti

Beilstein J. Nanotechnol. 2018, 9, 890–899, doi:10.3762/bjnano.9.83

Graphical Abstract
  • when annealed at different temperatures and in reactive or inert gas atmospheres. A set of samples has been annealed at a temperature slightly above the growth temperature (300 °C), a value compatible with a back-end process flow typically used in microelectronics CMOS integration process, and in O2
PDF
Album
Full Research Paper
Published 15 Mar 2018

Dopant-stimulated growth of GaN nanotube-like nanostructures on Si(111) by molecular beam epitaxy

  • Alexey D. Bolshakov,
  • Alexey M. Mozharov,
  • Georgiy A. Sapunov,
  • Igor V. Shtrom,
  • Nickolay V. Sibirev,
  • Vladimir V. Fedorov,
  • Evgeniy V. Ubyivovk,
  • Maria Tchernycheva,
  • George E. Cirlin and
  • Ivan S. Mukhin

Beilstein J. Nanotechnol. 2018, 9, 146–154, doi:10.3762/bjnano.9.17

Graphical Abstract
  • affects the elongation rate and the surface density of the wires. It has been experimentally demonstrated that the NW elongation rate and the surface density drastically depend on the substrate growth temperature, where 800 °C corresponds to the maximum elongation rate of the NWs. In the second part of
  • 1000 °C. We then cooled down the substrate to 650 °C for deposition of a few nanometer thick AlN layer. Then the substrate was heated to the growth temperature and GaN was deposited. All experiments were carried out in a Veeco GENIII MBE machine. A Riber RF valved plasma source was used to provide the
  • approaches, axial growth of GaN NWs at high growth temperature can be explained by the near zero nucleation barrier on the top polar facet of this wurtzite structure, in comparison to its nonpolar sidewalls [27][41]. Crystallization on the NW top facet starts earlier and reduces the Ga adatom concentration
PDF
Album
Full Research Paper
Published 15 Jan 2018

Transition from silicene monolayer to thin Si films on Ag(111): comparison between experimental data and Monte Carlo simulation

  • Alberto Curcella,
  • Romain Bernard,
  • Yves Borensztein,
  • Silvia Pandolfi and
  • Geoffroy Prévot

Beilstein J. Nanotechnol. 2018, 9, 48–56, doi:10.3762/bjnano.9.7

Graphical Abstract
  • the growth temperature and on the growth mechanisms. In this paper, we have used STM, AES and LEED to follow the growth of Si films at various temperatures. Using a simple growth model, we have simulated the distribution of film thickness as a function of coverage during evaporation, for the different
  • flat islands, very thick islands also form. For example, the apparent height of the island shown in Figure 2g is 11 nm. Note that the silicene monolayer has not dewetted for this growth temperature and that a large part of the surface is covered by this layer. In order to discriminate between the
PDF
Album
Full Research Paper
Published 05 Jan 2018

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • located inside a horizontal electrical furnace (Lenton), enabling heating to the desired CNT growth temperature. The system was equipped with a mass flow controller, allowing a precise flow of gas mixtures. The sample was placed in a quartz boat located in the quartz tube. Prior to the CVD reaction, the
  • catalyst was reduced in the nitrogen/hydrogen flow mixture at the CNT growth temperature for ≈10 min. Ethylene (C2H4) gas was used as the carbon source and was then introduced into the reactor to initiate the CNT growth. For characterizing the CNTs, SEM and EDX measurements were carried out with a HITACHI
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Process-specific mechanisms of vertically oriented graphene growth in plasmas

  • Subrata Ghosh,
  • Shyamal R. Polaki,
  • Niranjan Kumar,
  • Sankarakumar Amirthapandian,
  • Mohamed Kamruddin and
  • Kostya (Ken) Ostrikov

Beilstein J. Nanotechnol. 2017, 8, 1658–1670, doi:10.3762/bjnano.8.166

Graphical Abstract
  • transmission electron microscopy (HRTEM) and Raman spectroscopy. Contact angle and electrical resistance measurements of the VGNs are carried out as well. Results and Discussion Growth and optimization Case I: Influence of growth temperature We investigated the early-stage nucleation and growth of VGNs over a
  • ]. As shown in Figure 1d, vertical sheets of a height of 37 ± 9 nm form on a NG layer. Here the NG base-layer thickness of 11 ± 2 nm is smaller compared to the one grown at 600 °C (17 ± 2 nm). Hence, it is inferred that the thickness of the NG layer decreases with the growth temperature. In addition
  • grown at 600 °C, which agrees with the SEM observation (grain size = 28 nm). The in-plane crystallite size increases with the growth temperature, as shown in Figure 3c. At 625 °C the vertical sheets started to form, accompanied by an increase of defect density due to dominance of edges. This can be
PDF
Album
Full Research Paper
Published 10 Aug 2017

Comprehensive Raman study of epitaxial silicene-related phases on Ag(111)

  • Dmytro Solonenko,
  • Ovidiu D. Gordan,
  • Guy Le Lay,
  • Dietrich R. T. Zahn and
  • Patrick Vogt

Beilstein J. Nanotechnol. 2017, 8, 1357–1365, doi:10.3762/bjnano.8.137

Graphical Abstract
  • disordered [16]. If the growth temperature further increases above 300 °C, the related Raman spectra become dominated by an intense mode at 520 cm−1 and a broad band at 900 cm−1, showing a strong similarity to bulk diamond-like silicon. The low-intensity Raman bands below the band at 520 cm−1 will be
  • formed. The fact that the intensity of the L(T)O phonon mode gets higher for deposition at 350 °C demonstrates that the sizes of the crystallites enlarge with increasing deposition temperatures. However, this temperature is still low compared to the growth temperature of crystalline Si, which usually
PDF
Album
Full Research Paper
Published 03 Jul 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • nanocrystal correspond to those of a Pt crystal. This proved that metallic Pt catalyzed the inner tube growth. In situ HRTEM further confirmed that the inner tube wall remained terminated at a Pt crystal even at the growth temperature of 760 °С (Figure 7b). The authors of [144] suggested that the growth of
PDF
Album
Review
Published 11 Apr 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • experimental conditions, with the exception of an elevated temperature (50 °C) nanorods are obtained (Figure 1d). We therefore hypothesize that a synergistic effect of OH− adsorption [23][24][29][30], inherent magnetic moment, controlled aggregation and growth temperature are the factors influencing the
  • observation also reinforces the fact that the nanoplates are two-dimensional laterally confined structures and additionally, also provides a methodology to obtain separated nanoplates. It was found that the ambient growth temperature is critical for the formation of nanoplates. At higher temperatures (50 °C
  • complex magnetic nanostructures for various technological applications. The concentration of TMAH and the growth temperature play a critical role in controlling the morphology of cobalt nanoplates. FEGTEM micrographs captured after 45 min: (a) Sample A (cTMAH = 0.01 M) size of single flower = 250 nm
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Advances in the fabrication of graphene transistors on flexible substrates

  • Gabriele Fisichella,
  • Stella Lo Verso,
  • Silvestra Di Marco,
  • Vincenzo Vinciguerra,
  • Emanuela Schilirò,
  • Salvatore Di Franco,
  • Raffaella Lo Nigro,
  • Fabrizio Roccaforte,
  • Amaia Zurutuza,
  • Alba Centeno,
  • Sebastiano Ravesi and
  • Filippo Giannazzo

Beilstein J. Nanotechnol. 2017, 8, 467–474, doi:10.3762/bjnano.8.50

Graphical Abstract
  • temperature process. It is possible to obtain a high quality Al2O3 film by depositing using a plasma-enhanced ALD process and exploiting trimethylaluminium (TMA) as the metalorganic chemical precursor and O2 as the co-reagent at an optimal growth temperature of 250 °C. Nevertheless, such a temperature is
PDF
Album
Full Research Paper
Published 20 Feb 2017

Sb2S3 grown by ultrasonic spray pyrolysis and its application in a hybrid solar cell

  • Erki Kärber,
  • Atanas Katerski,
  • Ilona Oja Acik,
  • Arvo Mere,
  • Valdek Mikli and
  • Malle Krunks

Beilstein J. Nanotechnol. 2016, 7, 1662–1673, doi:10.3762/bjnano.7.158

Graphical Abstract
  • stoichiometry [71]. To generalize, not only chlorides but also the SbI3 complex with tu, Sb(tu)3I3, decompose at around 200 °C [72]. Also, our preparatory study on the use of SbCl3 and tu for growing Sb2S3 films by spray pyrolysis [23] indicated the use of 250 °C as a suitable growth temperature according to
PDF
Album
Supp Info
Full Research Paper
Published 10 Nov 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • temperatures of 850–1000 °C [55]. Other CVD derivative methods are used that produce CNTs at a reduced growth temperature and increased batch yield. These methods are: plasma-enhanced CVD, where a gas such as C2H2, CH4, C2H4, C2H6, or CO is supplied to the chamber and a discharge at high frequency is applied
  • of Si in the gas phase [169] in order to reduce the sublimation rate with the positive pressure. The growth temperature is a very important parameter because it influences the number of graphene layers grown and it is directly related to the Si diffusion (Figure 28) [170]. The graphene can also be
  • -quality, monolayer graphene. The second drawback could be solved, as in the CVD process, by reducing the growth temperature by the use of PECVD equipment. Industry and research groups worldwide are intensely searching for a solution to this problem because it could contribute to the launch of graphene
PDF
Album
Review
Published 01 Feb 2016

Dependence of lattice strain relaxation, absorbance, and sheet resistance on thickness in textured ZnO@B transparent conductive oxide for thin-film solar cell applications

  • Kuang-Yang Kou,
  • Yu-En Huang,
  • Chien-Hsun Chen and
  • Shih-Wei Feng

Beilstein J. Nanotechnol. 2016, 7, 75–80, doi:10.3762/bjnano.7.9

Graphical Abstract
  • , optical, and electrical characteristics of LPCVD-grown ZnO are sensitive to the growth temperature, pressure, and flow rate, TCO can be tuned according to the application. ZnO films grown on a sapphire substrate undergo residual strain induced by the lattice mismatch and the difference in thermal
PDF
Album
Full Research Paper
Published 20 Jan 2016

Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties

  • Andrea Capasso,
  • Theodoros Dikonimos,
  • Francesca Sarto,
  • Alessio Tamburrano,
  • Giovanni De Bellis,
  • Maria Sabrina Sarto,
  • Giuliana Faggio,
  • Angela Malara,
  • Giacomo Messina and
  • Nicola Lisi

Beilstein J. Nanotechnol. 2015, 6, 2028–2038, doi:10.3762/bjnano.6.206

Graphical Abstract
  • . After the initial ramping of the furnace temperature the pressure was stabilised at 4 mbar by flowing 20 sccm Ar and 20 sccm H2. The quartz boat supporting the samples was then inserted into the hot zone and annealed for 1200 s at the growth temperature. Liquid pyridine was contained in a steel “bubbler
PDF
Album
Supp Info
Full Research Paper
Published 14 Oct 2015

Magnetic properties of self-organized Co dimer nanolines on Si/Ag(110)

  • Lisa Michez,
  • Kai Chen,
  • Fabien Cheynis,
  • Frédéric Leroy,
  • Alain Ranguis,
  • Haik Jamgotchian,
  • Margrit Hanbücken and
  • Laurence Masson

Beilstein J. Nanotechnol. 2015, 6, 777–784, doi:10.3762/bjnano.6.80

Graphical Abstract
  • growth temperature, individual or regular arrays (with a pitch of 2 nm) of Si nanoribbons can be grown. Next, the Si/Ag(110) system is used as a novel one-dimensional Si template to guide the growth of Co dimer nanolines on top of the Si nanoribbons, taking advantage of the fact that the thermally
PDF
Album
Full Research Paper
Published 19 Mar 2015

Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

  • Omar F. Farhat,
  • Mohd M. Halim,
  • Mat J. Abdullah,
  • Mohammed K. M. Ali and
  • Nageh K. Allam

Beilstein J. Nanotechnol. 2015, 6, 720–725, doi:10.3762/bjnano.6.73

Graphical Abstract
  • procedure, 0.05 M zinc nitrate (Zn(NO3)2·6H2O) was mixed with hexamethylenetetramine (HMT) in a glass beaker and slowly stirred until complete dissolution was achieved. The growth temperature and time was 95 °C and 3 h, respectively. The beaker was then left inside the oven for 30 min to cool down to 40 °C
PDF
Album
Full Research Paper
Published 12 Mar 2015

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • carried out in a quartz tube furnace at atmospheric pressure. Typical growth conditions are 780 °C under an argon/hydrogen/ethene/water atmosphere for 2–3 minutes. After heating the substrates to the growth temperature under a steady flow of hydrogen (400 sccm), argon (600 sccm), and ethene (75 sccm
  • gold. This assures a random CNT growth. In contrast, for the growth of the aligned CNT arrays, the growth substrate was silicon and the growth temperature was set to 800 °C with an ethylene flow of 100 sccm (all other conditions being the same as above). The CNTs obtained in this process are mainly
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Integration of ZnO and CuO nanowires into a thermoelectric module

  • Dario Zappa,
  • Simone Dalola,
  • Guido Faglia,
  • Elisabetta Comini,
  • Matteo Ferroni,
  • Caterina Soldano,
  • Vittorio Ferrari and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2014, 5, 927–936, doi:10.3762/bjnano.5.106

Graphical Abstract
  • (SEM) images of ZnO nanostructures fabricated by PVD technique [23]. Growth temperature has a strong influence on the nanostructures morphology; in fact, samples prepared at the highest temperature (1070 °C) show larger-size nanostructures as compared to low-temperature grown samples (700 °C). Further
PDF
Album
Full Research Paper
Published 30 Jun 2014
Other Beilstein-Institut Open Science Activities